Can quantum computers aid light cone Hamiltonian
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Why Hamiltonians?

Hamiltonian picture is more natural than Lagrangian in the
AMO/condensed matter settings where quantum simulation is
done.

Jordan-Wigner transform allows interaction Hamiltonian for a
lattice gauge theory to be mapped onto a Hamiltonian for spin
interactions.

The Hamiltonian picture allows dynamical, real-time descriptions
of physical processes.
The challenge: How can the Hamiltonian of QCD be mapped
onto a real quantum simulator?

e How can this be used to compute the quark and gluon content of

hadrons?

The proposal: Light cone quantization offers a simpler
Hamiltonian formulation of QCD and other gauge theories.

e Though it is geared towards momentum space rather than
configuration space.
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What is light cone quantization?

o Define light cone coordinates:

T =t+2z
r =t—=z
Xl = (x,y)
o Off-diagonal metric:
2 =gty — xi.

o The “energy” P~ generates
translations in the “time” x™T.
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Why light cone quantization?

o The Poincare group generators look like this:

Translations Boosts Rotations
P+:PO+PZ BL12(1(1+J2) SJ_]_:(Kl—JQ)
P~ =P%_ p? By = (Ky—J1) Sio=(Ky+J1)
P, = (P, Py) K3 J3

@ The operators J3, P |, and B | generate a GGalilean subgroup in
the transverse plane.

@ The longitudinal boost K3 merely rescales all these operators.

@ The theory is invariant under both K3 and the Galilean subgroup.

o This produces non-relativistic group structure on the light
cone.

e Promising if we want to use a non-relativistic Hamiltonian to
simulate QCD!
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Why light cone quantization?

The dispersion relation includes no square roots:

. _ m? + p2
0, %) = W) = (pﬁ) )

A remarkably similar structure to the non-relativistic dispersion
relation in two dimensions.

@ The true Hamiltonian of a field theory is more complicated—it
involves integrals of fields.

e But in light cone quantization, the full Hamiltonian is the sum of
free and interaction parts:

H=T+U=T+V+F+S+0C)

See Brodsky et al., Phys. Rep. 301 (1998) for full description of the terms.
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Fock state decomposition

e Fock space decomposition gives us a particle content picture.

e This picture falls naturally out of light cone quantization, and is
invariant under boosts and the Galilean subgroup.

e Fock space is the basis we want to use if we’re aiming to compute
the quark/gluon content of a hadron.

e In light cone quantization, the Schwinger model bound state has a
very simple particle content: it’s just an electron and a positron!
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On a computer: discretized light cone quantization

o Traditionally, computations are done in momentum space.
@ Periodic boundary conditions are used, too.
o This ensures conservation of charges (energy, color, etc.).

e PT has a discrete spectrum; choosing an eigenvalue for PT sets
the harmonic resolution and truncates the Fock space.

e One constructs all color-singlet states for some P* and then
diagonalizes the Hamiltonian P~.

e pT — oo returns the continuum limit.

e The difficulty: a harmonic resolution as low as 5 can produce a
Hilbert space as big as 102° dimensions.
e This is not a tractable problem on a classical computer.
e Can a quantum computer make this more tractable?
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Challenges

e DLCQ computations are traditionally done in momentum space.
e Can quantum simulations be done in momentum space?
o With periodic boundary conditions?
e Can the state space of an AMO or condensed matter system
simulate a truncated Fock space?
e Is this a problem better posed for a universal quantum computer?
(e.g., running a fast matrix diagonalization algorithm?)
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